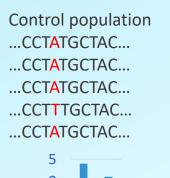

GWAS Are Used to Identify Novel AD Candidate Genes Using Large-Scale Genetic Information

AD population
Disease phenotype

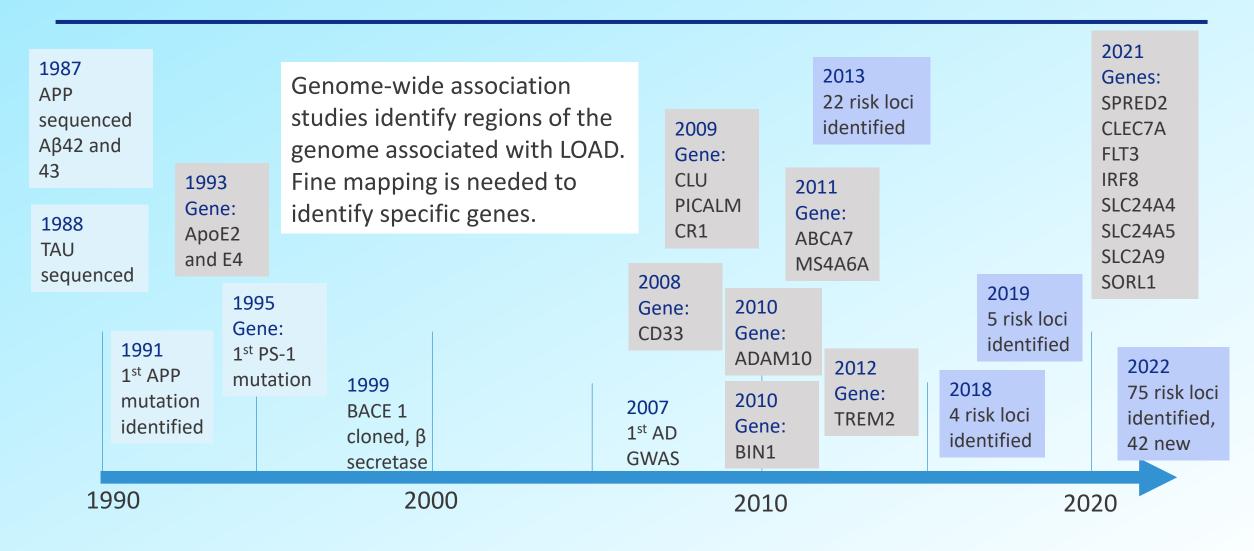


Control population
Without the disease phenotype

STEPS in GWAS:

- Enroll a large population of people that differ in the trait of interest
- Do a careful phenotype analysis
- Survey each person's genome for variation (called singlenucleotide polymorphisms, SNPS) in the genetic code
- Look for variants that are significantly more common in the disease population than in the control population
- These variants are map posts on the chromosome that are used to explore the nearby genes as candidate genes for AD
- GWAS are useful for nominating candidate genes, but typically are unable to establish disease causality (due to genetic linkage, lack of statistical power, multiple causative variants or genes).¹ Functional validation is needed through cell biology or animal studies

Identify single-nucleotide polymorphisms (differences) between populations



Bellenguez et al, CC by 4.0²

GWAS, genome-wide association studies.

1. Flister M et al. *Genome Res.* 2013;23:1996-2002; 2. Bellenguez C et al. *Nat Genet.* 2022;54:412-436.

GWAS Have Significantly Increased the Pace of AD Gene/Risk Loci Discovery

Susceptibility Loci Help Pinpoint Major Molecular Pathways Associated With LOAD

Gene	Molecular Pathway
ApoE, SORL1, CLU, CR1, PICALM, BIN1, ABCA7, CASS4, PLD3	Amyloid pathway
CLU, CR1, EPHA1, ABCA7, MS4A4A/MS4A6E, CD33, CD2AP, HLA- DRB5/DRB1, INPP5D, MEF2C, TREM2/TREML2	Immune system/inflammation
ApoE, CLU, ABCA7, SORL1	Lipid transport and metabolism
CLU, PICALM, BIN1, EPHA1, MS4A4A/MS4A6E, CD33, CD2AP, PTK2B, SORL1, SLC24A4/RIN3, MEF2C	Synaptic cell functioning/endocytosis
BIN1, CASS4, FERMT2	Tau pathology
PTK2B	Cell migration
MEF2C, PTK2B	Hippocampal synaptic function
CELF1, NME8, CASS4	Cytoskeletal function and axonal transport
INPPD5	Microglial and myeloid cell function
FBXL7	Phosphorylation-dependent ubiquitination